CURiNGUOUR BiNARY DiSEASE

GOOIS TSI BGMAYABDUT iNVESTI QAKANGE . ER GRANG G AT $G

A SITUATION

Fritz has the test management software on the screen,
and a scribbled requirements document in his hand.

“Verify that...”

“Pass/Fail”

What's important?

tools-to-theories ¢ 1. Background o] Self-help to Liberation

Curing Our Noteworthy Information

Pass/Fail addiction

Binary Disease

Coverage Obsession

4. Going Forward

2. Symptoms

Metrics Tumor

Sick Test Techniques

TOOLS-TO-THEORJES

Tools shape our theories
Tools shape acceptance of theories

Software testing is a lot about computers

Most software is made for people...

Our theories are way too computeresque

They R 2 yedptiire ¢ K | inpbétant

Gerd Gigerenzer

PASS/FAiL ADDiCTiON

You feel good when ending a test with Pass or Fail
Tests are constructed so Pass/Fail can be used

You reduce the value of requirements documents by insisting
everything must be verifiable

, 2 dz C)2dz3/[3 t a4aSa |)/Iv? Cl At az
Important

2dz KFOSYWid KSIENR 2F 4ASNBYRAI

Status reporting is easy since counting Pass/Fail is the essence

Reality A & Bif@riy, we can communicate noteworthy information
we R 2 ykgbw everythingin advance

PASS/FAiL REHAB

Do some deviations when executing tests

Look at some more places than what is stated in the Expected
Results field

Werite the occasional test idea using the word "investigate”
Put the numbers in smaller font in your status report
Observe the software without a hypothesis to falsify

You can ask richer questions than: Is this correct or not?
You can learn things, and grow as tester.

See it as your daily medicine; eventually any Pass/Fail usage will
seem ridiculous

COVERAGE OBSESSiON

50% coverage can mean

* we have found so many serious bugs that further testing is pointless
* we are running late because testers insist on investigating things they

I NBYyQu SELIX AOAute uz2tR 02 221 T2
* we have run the 50 most difficult test ideas, and we believe we will finish

on schedule

* we have run the 50 easy tests on input data, and look forward to the results
from the radically different test ideas

* we have run the first half, in alphabetical order, and are not really sure
what we are doing

* we have investigated the 50 most important test ideas, and believe the
implicit coverage is enough to go Beta

* we are halfway through, but have found a lot of things that are more
important to test than our original assumptions

COVERAGE OBSESSiON

A coverage model is useful to get ideas
Not useful as a metric of completion

A model can help you find important things, but a percentage
number might not include things that are important

Information about the system is more important than
information about the model of the system (Emilsson)

METRiCS TUMOR

Should have at least 80% code coverage on unit tests
=> peer reviewed and accepted

2% better defect detection percentage
=> conversation with support people

95% Pass on test cases
=> means nothing at all

aSladzaNBYSyida OFyQlu 2dzZRIS GKI |
reality is impossible to aggregate;
metrics are dangerous.

SiCK TEST DESiIGN TECHNIQUES

The techniques that usually are taught are old,
they are based in computer science and
ideas about everything being known in advance

THE LITTLE
BLACK BOOK
ONTEST DESIGN

They try to solve the impossibility of complete
testing, and disregard what is common,
error-prone, popular, risky, changedX

They R 2 yedptilire what is important

Everything

Test Artlfacts Product History
Quality Characteristics
Failure Mode @ @
Dellverables

Capabllltles Legal
Technologles %
aspects
| Usage

Informatlon Standards Scenarlos

Objectives
L B Conversations l
In ternal Context Analysis m
CoIIectlons Competitors

CoIIectlons
Actual software Purpose
Business
Knowledge
References
Field Information _

Creative Ideas Background

Everything

WE ARE HUMANS

L UnéX &nly that software is made for humans, by humans
We are making new, unique things; providing value

Humans are superior to machines at:
* understanding & K | iigb&ant

* judgment

* separating right from wrong

* dealing with the inevitable unknown

Do your best, collaborate, learn to understand
what Is important

LiBERATION

To set all testers free, you should start with yourself

First step is acknowledgement

Next steps are your own, but will include thinking in new ways

Might involve helping others trusting testers

Ask stakeholders: What do you really want to know?
C three or four times if necessary.

NOTEWORTHY iNFORMATiON

We should communicate
C benefits

problems

tips and suggestions

opportunities

risks and fears

D N N N N

killed rumors

We should establish confidence

This is difficult to aggregate!

COMMUNiCATION

Do we know how to communicate the essence fast?
We must train analyzing and communication (for testing!)

We need more words, and better metaphors
C serendipity

saturation

qguality has many faces

things connected to life, not machines

DH N N N

your appropriate words that build confidence and trust

A shared customized quality model can help

Software Quality Characteristics

Go through the list and think about your product/features. Add specifics for your context, and transform the list to your own.

Capability. Can the product perform valuable functions?

- Completeness: all important functions wanted by end users are available.

- Accuracy: any output or calculation in the product is correct and presented with significant digits.

« Efficiency: performs its actions in an efficient manner (without doing what it’s not supposzed to do.)

- interoperability: different fearures interact with each other in the best way.

« Comcurrency: ability to perform multiple parallel tasks, and run at the same time as other processes.

- Data ag all possible data formats, and handles noise.
bumuvmwmmorsﬂymwmmwcwumw

Reliability. Can you trust the product in many and difficult situations?

-SmmepudeBn\umtrMnhmadmdmwxﬁumm
the product bandles £ and unf errors gracefully.

Stress handling: how does the system cope when exceeding various imits?

Recoverability: it is possible to recover and i using the product after a fatal error.

Data Integrizy: all types of data remain intact throughout the product.

Safety: the product will not be part of damaging people or possessions.

Disaster Recovery: what if something really, really bad happens?

Trustworthiness: is the product’s bebavior predictabl

Usability. Is the product easy to use?

- Affordance: product invites to discover possibilities of the product.

« Intuitiveness: it is easy to understand and explain what the product can do.

- Minimalism: there is nothing redundant about the product’s content or appearance.

« Learnability: it is fast and easy to learn bow to use the product.

« Memorability: once you have learnt how to do something you don't forget it.

- Discoveradility: the product’s information and capabilities can be discovered by exploration of the user interface.

« Operadility: an expers d user can perf ctions very fast.

- Interactivity: the product has easy-to-understand states and possibilities of interacting with the application (via GUI or API).
« Control: the user should feel in control over the proceedings of the software.

- Clarity: is everything stated explicitly and in detail with a Janguage that can be understood, Jeaving no room for doubt?
- Errors: there are informative error messages. difficult to make mistakes and easy to repair after making them.

- Consistency: behavior is the same throughout the product, and there is one look & feel.

- Tatlorability: default settings and behavior can be specified for flexibility,

A ibility: the product is possible to use for as many people as possible, and meets applicable accessibility standards.
Documammmuauclpmbeipzmdammhumnuq

Charisma. Does the product have “it"?

- Uniqueness: the product is distinguishable and bas something no one else has.

- Satisfaction: how do you feel after using the product?

- Professionalism: does the product have the appropriate flair of professionalism and feel fit for purpose?

- Attractiveness: are all types of aspects of the product appealing to eyes and other senses?

= Curiosizy: will users get interested and try out what they can do with the product?

- Entrancement: do users get hooked, have fun. in a flow, and fully engaged when using the product?
«Hype: wmmmmmmmmwmsm,

- Expectancy: the p and meets the needs you dida't know you had.

- Attitude: ammuwm:mmmm-mwwmmammwm style?
- Directness: are (first) impressions impressive?

- Story: are there compelling stories about the product’s inception, construction or usage?

Security. Does the product protect against unwanted usage?

- Authentication: the product’s identifications of the users.

« Authorization: the product’s handling of what an authenticated uzer can see and do.

- Privacy: ability to not disclose data that is protected to unauthorized users,

- Security holes: product should not invite to social engineering vulnerabilities.

- Secrecy: the product should under no circumstances disclose information about the underlying systems.
- Invulneradility: ability to withstand penetration attempts.

= Viruz-free: product will not transport virus, or Appear as one.

- Piracy Resistance: no possibility to illegally copy and distribute the software or code,

« Compliance: security standards the product adheres to.

and o

rthy?

IT-bility. Is the product easy to install, maintain and support?

- System requirements: ability to run on supported configurations, and handle different environments or missing components.

« Installability: product can be installed on intended platforms with appropriate footprint.
- Upgrades: ease of upgrading to a newer version without loss of configuration and setrings.

- Uninstaliation: mﬂﬂn(m;tuﬁsormmﬂhs)md“nmn“whnmmﬂu?

- Configuration: can the install be d in various ways or places to support customer’s usage?
Dcﬂmbmorpmncmummmwﬂdwmtedmﬂmmd(nmum-sndmmhmnu.

- Maintainability: are the product and its artifacts easy to maintain and support for s?

- Teszability: how effectively can the deployed product be tested by the customer?

Compatibility. How well does the product interact wfth software and environments?

- Hardware Compatidility: the product can be used with ap of hardware

- Operating System Compatidility: the p .unmonmnudodopoum'mvwﬂons Mfobcwstypualbﬂumr
- Application Compatibility. the product, and its data, works with other applications customers are likely to use.

- Configuration Compatidility: product’s ability to blend in with configurations of the environment.

= Backward Compatibility: can the p do everything the last version could?

- Forwand Companbility: will the product be able to use artifacts or interfaces of future versions?

- Sustainability: effects on the environment, e.g. energy efficiency, swh:h-oﬂspmuﬁunodtanhmmtm;

- Standards Conformance: the product conforms o applicabl 5 laws or ethics,

Internal Software Quality Characteristics

These characteristics are not directly experienced by end users, but can be equally imp
Supportability. Can customers’ usage and problems be supported?

« Identifiers: i3 it easy to identify parts of the product and their versions, or specific ermors?
- Diagnostics: is it possible to find out details regarding situatons?

- Troubleshootable: is it easy to pinpoint errors (e.g. log files) and get help?

~ Debugging: can you observe the internal states of the software when needed?

- Versatility: ability to use the product in more ways than it was originally designed for.

Testability. Is it easy to check and test the product?

- Traceability: the product logs atappropriate levels and in usable format.
Conwnabxmyabdnyw dependently set states, objects or variabl

- Observability: ability to observe things that should be tested.

- Monitorability: can the product give hints on what/how it is doing?

~ Isolateadilizy; ability to test 4 part by itself.

- Stability: changes to the software are controlled, and not too frequent.

= Automation: are there public or hidden programmatic interface that can be used?
- Informanion : ability for testers to learn what needs to be learned...

« Auditability: can the product and its creation be validated?
Maintainability. Can the product be maintained and extended at low cost?
- Flexibility: the ability to change the product a5 required by customaers.
Extennibility: will it be easy to add features in the future?

- Simplicity: the code is not more complex than needed. and does not obscure test design, execution and evaluation,
« Readability: the code is adequately documented and easy to read and understand,

et

for ful prod

Transparency: 15 it easy to understand the underlying structures?

Modularity: the code is split into manageable pieces.

Refactorability: are you satisfied with the unit tests?
- Analyzadility: ability to find causes for defects or other code of interest.
Portability. Is transferring of the product to different environments enabled?
- Reusadility: can parts of the product be re-used elsewhere?

~ Adaprability: is it easy to change the product to support a different env ?

- Compatibility: does the product comply with common interfaces or official standards?
« Internationaiization: it is easy to tranzlate the product.
- Locaiization: are all parts of the product adjusted to meet the needs of the targeted culture /country?
« User Interface-robusiness: will the product look equally good when translated?

Rikard Edgren. Henrik Emilsson and Martin Jansson - thetesteye.com v1.1

This work &7 Sicensed under the Creative Commons Attridution-No Dervative License
inspired by Jemes Bock's CRUSSPIC STMPL, ISO 9126-1, Wikipedia lities and more...

Performance. Is the product fast enough?

« Capacity: the many limits of the product. for different circumstances (e.g. slow network)
- Resource Unlization: appropriate usage of Yy, storage and other

- Responsiveness: the speed of which an action is (perceived as) performed.

- Availability: the system is available for use when it should be.

- Throughput: the products ability to process many, many things.

« Endurance: can the product handle load for a long time?

- Feedback: is the feedback from the sy on user acth priate?
mmzymmammmm-p omordm?

GOING FORWARD

My steps are lighter since | cured myself

Testing A & §3§y U
If you make it easy, you lose the best parts

¢KS YySEG 3ISYSNIXiA2yQa GKAY] A

Life A & gb6ltiticking off check boxes
It is much richerX

QUESTIONS

???
THE LITTLE
BLACK BOOK
ONTEST DESIGN
References:

¢ Adaptive Thinking (Gigerenzer)
C Software Testing is a Social Science (Kaner)
C The Little Black Book on Test Design (Edgren)

i': gamcom

This work is licensed under the Creative Commons Attribution-No Derivative License

mailto:rikard.edgren@qamcom.se
http://thetesteye.com/blog/

