

Fritz has the test management software on the screen,
and a scribbled requirements document in his hand.

 “Verify that…”

“Pass/Fail”

aŀƴȅ ǘŜǎǘŜǊǎ ŘƻƴΩǘ ǇǊƻǾƛŘŜ ǳǎŜŦǳƭ ƛƴŦƻǊƳŀǘƛƻƴΣ
ōŜŎŀǳǎŜ ǘƘŜȅ ŀǊŜƴΩǘ ŀƭƭƻǿŜŘ ǘƻΦ

The binary disease limits our thinking.

Tools shape our theories

Tools shape acceptance of theories

Software testing is a lot about computers

Most software is made for people...

Our theories are way too computeresque

They ŘƻƴΩǘ capture ǿƘŀǘΩǎ important Gerd Gigerenzer

You feel good when ending a test with Pass or Fail

Tests are constructed so Pass/Fail can be used

You reduce the value of requirements documents by insisting
everything must be verifiable

¸ƻǳ Ŏƻǳƴǘ tŀǎǎŜǎ ŀƴŘ CŀƛƭǎΣ ōǳǘ ŘƻƴΨǘ ŎƻƳƳǳƴƛŎŀǘŜ ǿƘŀǘ ƛǎ Ƴƻǎǘ
important

¸ƻǳ ƘŀǾŜƴΨǘ ƘŜŀǊŘ ƻŦ ǎŜǊŜƴŘƛǇƛǘȅ

Status reporting is easy since counting Pass/Fail is the essence

Reality ƛǎƴΩǘ binary, we can communicate noteworthy information

we ŘƻƴΩǘ know everything in advance

Do some deviations when executing tests

Look at some more places than what is stated in the Expected
Results field

Write the occasional test idea using the word "investigate"

Put the numbers in smaller font in your status report

Observe the software without a hypothesis to falsify

You can ask richer questions than: Is this correct or not?
You can learn things, and grow as tester.

See it as your daily medicine; eventually any Pass/Fail usage will
seem ridiculous

50% coverage can mean

* we have found so many serious bugs that further testing is pointless

* we are running late because testers insist on investigating things they
ŀǊŜƴΩǘ ŜȄǇƭƛŎƛǘƭȅ ǘƻƭŘ ǘƻ ƭƻƻƪ ŦƻǊ

* we have run the 50 most difficult test ideas, and we believe we will finish
on schedule

* we have run the 50 easy tests on input data, and look forward to the results
from the radically different test ideas

* we have run the first half, in alphabetical order, and are not really sure
what we are doing

* we have investigated the 50 most important test ideas, and believe the
implicit coverage is enough to go Beta

* we are halfway through, but have found a lot of things that are more
important to test than our original assumptions

A coverage model is useful to get ideas

Not useful as a metric of completion

A model can help you find important things, but a percentage
number might not include things that are important

Information about the system is more important than
information about the model of the system (Emilsson)

Should have at least 80% code coverage on unit tests

=> peer reviewed and accepted

2% better defect detection percentage

=> conversation with support people

95% Pass on test cases

=> means nothing at all

aŜŀǎǳǊŜƳŜƴǘǎ ŎŀƴΩǘ ƧǳŘƎŜ ǿƘŀǘ ƛǎ ƛƳǇƻǊǘŀƴǘΤ

reality is impossible to aggregate;

metrics are dangerous.

The techniques that usually are taught are old,
they are based in computer science and
ideas about everything being known in advance

They try to solve the impossibility of complete
testing, and disregard what is common,
error-prone, popular, risky, changedΧ

They ŘƻƴΩǘ capture what is important

Capabilities

Failure Mode

Models

Data

Surroundings

White-

box

Product History

Actual software

Technologies

Competitors

Purpose

Image

Business

Knowledge

Legal

aspects

Creative Ideas

Internal

Collections

You

Project

Background

Information

Objectives

Risks

Test Artifacts

Debt

Conversations

Context Analysis

Many

Deliverables

Tools

Quality Characteristics

Fears

Usage

Scenarios

Field Information

Users

Public

Collections

Standards

References

Searching

LǘΩǎ not only that software is made for humans, by humans

We are making new, unique things; providing value

Humans are superior to machines at:

* understanding ǿƘŀǘΩǎ important

* judgment

* separating right from wrong

* dealing with the inevitable unknown

Do your best, collaborate, learn to understand

what is important

To set all testers free, you should start with yourself

First step is acknowledgement

Next steps are your own, but will include thinking in new ways

Might involve helping others trusting testers

Ask stakeholders: What do you really want to know?
ς three or four times if necessary.

We should communicate
ςbenefits

ςproblems

ς tips and suggestions

ςopportunities

ς risks and fears

ςkilled rumors

We should establish confidence

This is difficult to aggregate!

Do we know how to communicate the essence fast?

We must train analyzing and communication (for testing!)

We need more words, and better metaphors
ς serendipity

ς saturation

ςquality has many faces

ς things connected to life, not machines

ςyour appropriate words that build confidence and trust

A shared customized quality model can help

My steps are lighter since I cured myself

Testing ƛǎƴΩǘ easy

If you make it easy, you lose the best parts

¢ƘŜ ƴŜȄǘ ƎŜƴŜǊŀǘƛƻƴΩǎ ǘƘƛƴƪƛƴƎ ǘŜǎǘŜǊǎ

Life ƛǎƴΩǘ about ticking off check boxes

It is much richerΧ

???

References:
ς Adaptive Thinking (Gigerenzer)

ς Software Testing is a Social Science (Kaner)

ς The Little Black Book on Test Design (Edgren)

rikard.edgren@qamcom.se

This work is licensed under the Creative Commons Attribution-No Derivative License

http://thetesteye.com/blog/

mailto:rikard.edgren@qamcom.se
http://thetesteye.com/blog/

